
Towards Efficient Traffic-analysis Resistant
Anonymity Networks

Stevens Le Blond1 David Choffnes2 Wenxuan Zhou3

Peter Druschel1 Hitesh Ballani4 Paul Francis1

1MPI-SWS 2Univ. of Washington/ 3UIUC 4Microsoft Research
Northeastern Univ.

ABSTRACT
Existing IP anonymity systems tend to sacrifice one of low
latency, high bandwidth, or resistance to traffic-analysis.
High-latency mix-nets like Mixminion batch messages to re-
sist traffic-analysis at the expense of low latency. Onion
routing schemes like Tor deliver low latency and high band-
width, but are not designed to withstand traffic analysis.
Designs based on DC-nets or broadcast channels resist traf-
fic analysis and provide low latency, but are limited to low
bandwidth communication.
In this paper, we present the design, implementation, and

evaluation of Aqua, a high-bandwidth anonymity system
that resists traffic analysis. We focus on providing strong
anonymity for BitTorrent, and evaluate the performance of
Aqua using traces from hundreds of thousands of actual Bit-
Torrent users. We show that Aqua achieves latency low
enough for efficient bulk TCP flows, bandwidth sufficient to
carry BitTorrent traffic with reasonable efficiency, and resis-
tance to traffic analysis within anonymity sets of hundreds
of clients. We conclude that Aqua represents an interesting
new point in the space of anonymity network designs.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
communication networks—Network Architecture and Design

Keywords
Anonymity networks, P2P file sharing, Strong anonymity

1. INTRODUCTION
Internet users concerned about their privacy, including

whistleblowers and dissident citizens of totalitarian states,
depend on reliable means to access Internet services anony-
mously. As demonstrated by a recent subpoena requiring
Twitter to provide connection details of suspected Wikileaks
supporters [25], governments can readily discover the net-
work identities of web users. Simple proxy VPN services

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).
SIGCOMM’13, Aug 12-16 2013, Hong Kong, China
ACM 978-1-4503-2056-6/13/08.
http://dx.doi.org/10.1145/2486001.2486002

also can be legally compelled to log and reveal client IP ad-
dresses, as demonstrated by a UK-based VPN that recently
complied with a US subpoena to trace one of its users [1].

Network anonymization services like Tor provide a higher
degree of protection, because individual proxies cannot learn
both the destination and client IP address of an anonymized
flow [11]. However, Tor is not designed to withstand traffic
analysis [9, 20, 23, 29, 32, 33], which means an attacker who
can observe the traffic at multiple proxies involved in a Tor
circuit (e.g., the ingress and egress proxy) can determine the
source and destination of the circuit. In practice, govern-
ments can request that ISPs duplicate targeted customers’
traffic on-the-fly and forward it through a secure channel [2].
The existence of surveillance facilities like the NSA Spy Cen-
ter in Utah suggests that government agencies may already
be collecting such information at a massive scale [3].

Traffic analysis works by matching the time series of en-
crypted packets within a circuit at different proxies. To
defeat traffic analysis, proxies have to obscure the temporal
pattern of individual packet flows (we refer to this process as
traffic obfuscation). Obfuscation can be achieved by batch-
ing packets from different flows or by adding artificial delay
or artificial traffic called chaff. Obfuscation necessarily ex-
acts a cost in terms of the delay, throughput, or bandwidth
requirements of anonymized flows.

Roughly a decade ago, a number of researchers proposed
designs for low-latency, traffic-analysis resistant anonymity
networks [4, 8, 12, 17, 18, 26, 28]. The performance of these
systems, however, was rather discouraging. Perhaps as a
result there has been a dearth of research in recent years
on low-latency traffic-analysis resistant anonymity networks.
While there is likely no silver bullet design, we feel that
this problem is important enough that researchers should
continue to work for solutions that exhibit an acceptable
benefit-cost ratio under some set of realistic conditions.

Towards this end, this paper describes the design, imple-
mentation, and evaluation of Anonymous Quanta (Aqua for
short), a low-latency anonymity network that resists traffic
analysis, can tolerate a bounded number of compromised
nodes, and scales well with the number of users. Aqua
demonstrates substantial performance gains over previous
designs for a workload based on thousands of actual Bit-
Torrent users. For instance, we show that Aqua achieves
k-anonymity within a set of k = 100 BitTorrent users with
a median cost of 15% additional bandwidth utilization and
20% longer download time.

There are three key insights behind Aqua’s design. First,
Aqua uses a different anonymization and traffic obfuscation

strategy in the core (i.e., on links connecting Aqua proxies)
than it does at the edges (i.e., on links connecting clients
to an Aqua proxy). This separation allows Aqua to take ad-
vantage of the different traffic conditions in core and edge to
minimize overhead for a given degree of anonymity. Second,
in the core, Aqua relies on encrypted, chaffed flows to achieve
a payload-independent, uniform traffic rate. It routes client
payload flows via multiple overlay paths to take advantage of
available capacity and minimize chaff bandwidth overhead.
Third, at the edges, Aqua forms sets of clients with similar
payload traffic patterns, and varies the rate of encrypted,
chaffed traffic on client links in the same set uniformly to
achieve k-anonymity. Thus, Aqua can take advantage of ex-
isting spatial and temporal correlation among client payload
flows to achieve large anonymity sets at low overhead.
Aqua’s initial target application is peer-to-peer file shar-

ing. BitTorrent is an important application, because it has
a large user base and many of its users desire anonymity. A
recent study showed that 17% of P2P file-sharing users were
already employing anonymizing services and 51% wished to
do so in the future [19]. For lack of an alternative, users to-
day resort to Tor, which is not designed to withstand traffic
analysis. Moreover, BitTorrent carries much traffic, which
presents both a challenge for existing anonymity designs and
an opportunity for Aqua: The higher the temporal and spa-
tial correlation among payload flows, the lower the inherent
overhead required to obfuscate the source and destination of
an individual flow.
This paper makes the following contributions:

• The design of a traffic-analysis resistant anonymity
network with high bandwidth efficiency and latency
low enough for bulk TCP flows.

• A trace-driven evaluation of Aqua on a workload of
hundreds of thousands of actual BitTorrent users.

• A comparison of Aqua’s performance with several al-
ternative designs: constant rate chaffing, broadcast
channels, and P2P overlays.

Our experimental evaluation shows that using multiple
paths in the core helps to disperse traffic peaks, which
in turn reduces the rate of chaff traffic and the result-
ing overhead significantly. Also, enforcing uniform variable
rate among endpoints with correlated traffic can provide k-
anonymity with low overhead.
The rest of this paper is organized as follow. Background

and related work is discussed in Section 2. We describe the
Aqua design and its security properties in Section 3. An ex-
perimental evaluation of the Aqua design, and some prelimi-
nary results with a prototype implementation are presented
in Section 4. Finally, we conclude in Section 5.

2. BACKGROUND AND RELATED WORK
Fundamental techniques. The ultimate source or desti-
nation of an IP packet can be concealed using a relay node,
such as a VPN service. However, this simple approach de-
pends on the integrity of the relay node, which knows the
source and destination of any packet passing through it. The
approach can be generalized to an anonymity network, where
packets are forwarded via several relays, such that no sin-
gle relay knows both source and destination of a packet (or
depending on the design, neither source nor destination).

Chaum introduced mix-nets to provide anonymous com-
munication and defeat traffic analysis [5]. In addition to
relaying messages, a mix hides the correspondence between
input and output messages through hop-by-hop encryption
and batching. Encryption provides bit-wise unlinkability;
that is, it unlinks the bit patterns of messages arriving at
the mix and the messages departing from the mix. Batching
prevents an attacker from tracing messages based on their
arrival and departure times. To defend against compromised
mixes, each message can be sent through a sequence of mixes
so anonymity is maintained as long as at least one mix in
the sequence is honest.

Dining cryptographers (D-C) nets [6, 16] and verifiable
shuffles [13, 22, 31] are cryptographic techniques that of-
fer strong resistance to traffic analysis without requiring
batching. However, computation and communication costs
have generally limited designs based on these ideas to small
anonymity sets and low bandwidth efficiency.

At a high level, anonymity networks can be divided into
peer-to-peer networks consisting only of clients and infras-
tructure based networks with dedicated relays separate from
the clients. P2P networks [12, 24] are inherently robust to
network edge analysis, because an attacker cannot distin-
guish whether a node is the source, destination or relay of
traffic. On the other hand, peers tend to be less reliable, less
powerful and more heterogeneous, which makes it harder to
provide predictable performance. Lastly, P2P network ex-
pose clients to additional legal risks, because they relay traf-
fic for other clients. Infrastructure based networks [11] tend
to have more powerful and reliable relay nodes, with known
locations and jurisdictions. However, they face network-
edge attacks, which require weaker adversarial models (i.e.,
trusted entry/exit relays) or additional defenses.
High-latency anonymity networks. Designs providing
both bit-wise unlinkability and batching are generally re-
ferred to as high-latency anonymity networks. These designs
are implemented by systems like Babel [15], Mixmaster [21],
and Mixminion [10] and carry delay-tolerant communica-
tions such as e-mails. Mix-nets typically perform public key
encryption for each message they process and typically delay
messages for hours for the purpose of batching.
Modest-latency anonymity networks. Many applica-
tions require both anonymity and modest latency. By re-
fraining from batching, anonymity designs can typically re-
duce round trip time to seconds or hundreds of millisec-
onds, making them appropriate for flow-based communica-
tion. But, by doing so, they generally have to give up one
of bandwidth efficiency (e.g., P 5 [26], Dissent [30]), or resis-
tance to traffic analysis (e.g., Tor).
Onion routing (Tor). The most popular low-latency
anonymity design, Tor, is circuit-based. To establish a cir-
cuit, a client selects a number of proxies at random and then
establishes a session key with each proxy in such a way that
each proxy knows only its predecessor and successor in the
circuit. Once a circuit is established, the client can encrypt
a packet using the session key of the proxies from last to first
and send the encrypted packet to the first proxy of the cir-
cuit. In turn, each proxy decrypts the packet and forwards
it to its successor in the circuit until the unencrypted packet
leaves the last proxy of the circuit. Tor is not designed to
resist traffic analysis attacks.

Dissent [30] is an infrastructure based anonymity service
with a very strong adversarial model, where a single honest

Aqua Tor Tarzan Dissent P 5 Mixminion
Architecture c/s c/s P2P c/s P2P c/s

Traffic analysis
resistance high none high very high high very high
Latency low low low low low high

Bandwidth
efficiency high high medium low low high

Anonymity set
size mediumlargemedium small small large

Table 1: Comparison of anonymity networks

proxy is sufficient to ensure anonymity, even in the presence
of an attacker who can observe all traffic. The system re-
lies on DC-nets and verifiable shuffles, and cleverly exploits
its infrastructure based architecture to scale to hundreds of
clients with modest delay and bandwidth sufficient for web
browsing. However, the system’s capacity and scalability are
subject to DC-net scaling limits with respect to the number
of proxies, and overhead per payload bit for cryptographic
processing.
P 5 [26] is a scalable peer-to-peer anonymity network ro-

bust to passive traffic analysis. The participating peers form
a hierarchy of broadcast channels, such that each peer joins
a small number (2 or 3) of different channels. The peers in a
given channel exchange hop-by-hop encrypted packets at a
fixed rate, mixing payload traffic with chaff to achieve a fixed
target rate. To send a packet to a peer r, the sender encrypts
the packet with r’s public key, and forwards the message to
one of the receiver’s channels, in which it is broadcast. By
choosing channels with different numbers of members, peers
can trade receiver anonymity for communication efficiency.
Tarzan [12] is a low-latency peer-to-peer anonymity net-

work. Tarzan relies on layered encryption to achieve bit-wise
unlinkability despite malicious peers. Tarzan uses chaff traf-
fic to obscure traffic patterns and ensures that the traffic of
the nodes within a given anonymity set is indistinguishable.
The original design of the Java Anonymous Proxy

(JAP) [4] infrastructure based anonymity network had
clients exchange constant traffic with the first mix of a cas-
cade, in order to defeat end-to-end traffic analysis. However,
this countermeasure was abandoned in the JAP deployment
because its bandwidth overhead was considered too high.
Similarly, the Freedom Network was initially deployed with
some countermeasures against traffic analysis but they were
latter removed due to their high bandwidth overhead [27].
Summary. Compared to existing techniques, Aqua occu-
pies a different point in the design space, seeking to meet
the needs of applications with a need for high bandwidth
efficiency, like BitTorrent. It combines a strong adversarial
model and modest latency with high bandwidth efficiency
and significantly large anonymity sets (hundreds). Aqua dif-
fers from Tor in its resistance to traffic analysis. Aqua dif-
fers from P 5 in its design, bandwidth efficiency, and detailed
threat model. Relative to Dissent, Aqua has a weaker ad-
versarial model (i.e., entry and exit mixes are assumed to be
trustworthy), but avoids the scaling limits due to the compu-
tational overhead of D-C nets. Unlike P 5 and Dissent, Aqua
uses unicast routing instead of broadcast, which gives it in-
herently better throughput for a given level of anonymity
and overhead. The technique used by Aqua to obscure traffic
on its client links has some similarity with Tarzan’s mimics.

However, Aqua splits payload traffic along multiple paths,
enabling it to better utilize available bandwidth within ex-
isting anonymity sets. Finally, Aqua takes advantage of sim-
ilarity in concurrent payload traffic to achieve anonymity
with high bandwidth efficiency. Together, these techniques
enable Aqua to achieve better bandwidth efficiency than
Tarzan and, to the best of our knowledge, all existing traffic
analysis resistant anonymity networks. Table 1 summarizes
our comparison.

3. DESIGN

3.1 Overview
System Model. Aqua consists of mixes, which relay traffic,
and clients, which originate and terminate traffic. Clients
and mixes are connected by links, which carry encrypted
traffic. Each client is attached to exactly one mix at a time,
chosen by the client to meet her privacy needs. For a given
payload flow, the mixes adjacent to the two communicating
clients are called the edge mixes.

Aqua adopts an infrastructure based architecture, because
dedicated mixes are likely to be more reliable and can be
placed in well-known locations and jurisdictions. Moreover,
this architecture does not expose clients to legal risks asso-
ciated with forwarding the traffic of unknown participants
like P2P architectures do.

In simple cases, an originating client contacts a receiv-
ing client (e.g., a server) at a well known address through
Aqua. Here, Aqua hides the address of the client, a property
called sender anonymity. In other cases, a receiving client
wishes to receive anonymous connections without revealing
her own address, a property called receiver anonymity. To
this end, Aqua provides a rendezvous mechanism, described
in Section 3.4, which joins two sender-anonymous flows at a
rendezvous mix, forming a sender-receiver mutually anony-
mous flow.
Threat Model. We assume an attacker who seeks to infer
which pairs of clients communicate via Aqua. The attacker
is able to observe the time series of encrypted traffic at all
clients and mixes as part of a global, passive traffic analysis
attack. Within a portion of the Internet controlled by the
attacker, he can additionally compromise mixes and clients,
and modify the time series of encrypted traffic as part of a
local, active traffic analysis attack. However, it is assumed
that legitimate clients choose uncompromised edge mixes
for their circuits1, and that the attacker controls any of the
client, the edge mix, or the network path between client and
edge mix on at most one end of a Aqua circuit.

The attacker can control only a bounded number of clients
and a bounded number of mixes. The ratio of active clients
to mixes is assumed to be large enough to ensure that there
are many payload flows between each pair of mixes at any
time. Lastly, we make the common assumption that attack-
ers cannot break the cryptographic primitives or compro-
mise the keys used by mixes or clients they do not control.
We will discuss Aqua’s anonymity under these attacks in
Section 3.5.
Goals. Aqua ensures the following anonymity property un-
der the threat model described above:

1For instance, by considering the mixes’ location, jurisdic-
tion, history and operator relative to the type of communi-
cation the client seeks to perform.

Figure 1: Top: A single circuit terminated by a re-
ceiving client provides sender-anonymity. Bottom:
Two Aqua circuits joined at a rendezvous mix pro-
vide a sender-receiver mutually anonymous circuit.

• k-anonymity. The attacker cannot determine which
legitimate client among a set of k clients is communi-
cating with a given target client or rendezvous mix.

Moreover, Aqua has the following performance goals:

• Scalability to large k. Aqua scales to large k, i.e.,
to large anonymity sets.

• Modest end-to-end latency. Because Aqua targets
applications like BitTorrent, its latencies must be low
enough to achieve good bulk TCP performance.

• High bandwidth. As Aqua targets bandwidth-
intensive applications, it must be able to use the ca-
pacity of the underlying network effectively.

Roadmap. In the rest of this section, we discuss the com-
ponents of Aqua’s design. Bitwise unlinkability is ensured
through layered, hop-by-hop encryption. Payload flows are
routed via a circuit consisting of an entry mix, a set of mid-
dle mixes, and an exit mix. Traffic obfuscation is achieved
by different mechanisms in the core and at the edge of the
Aqua network. In the core, Aqua maintains constant rate
encrypted traffic among mixes, where payload traffic is aug-
mented with chaff traffic to maintain the rate. Multipath
routing via different middle mixes exploits available pay-
load bandwidth in the core while keeping chaff traffic to a
minimum.
To obfuscate traffic at the edge, Aqua dynamically chooses

sets of clients with correlated payload traffic patterns. The
encrypted traffic rate of client links within a set is then
coupled, by shaping payload traffic and augmenting it with
chaff. As a result, the observed time series of encrypted
traffic on links in a set reveals nothing about payload flows,
ensuring k-anonymity. By assigning clients to an anonymity
set with similar payload traffic patterns, Aqua can exploit
correlated client traffic to achieve large anonymity sets while
keeping chaff traffic and payload traffic shaping low. Finally,
rendezvous provides receiver anonymity, by concatenating
two sender-anonymous circuits via a rendezvous mix (see
Fig. 1).

3.2 Bit-wise Unlinkability
Bit-wise unlinkability is achieved through layered and

hop-by-hop encryption over a dedicated circuit determined
by the originating client. When a client wishes to initiate a
bi-directional flow with another client, it selects two mixes to
serve as edge mixes for the duration of the flow. The client
establishes an onion circuit [14] involving the two edge mixes
and the destination. The destination could be a receiving
client, or a rendezvous mix in case of a receiver anonymous
circuit (see Section 3.4).

Packets exchanged between the edge mixes may be sent on
the direct link between the edge mixes, or traverse a middle
mix selected from the other mixes. Different packets from a
given flow may traverse different middle mixes. By forward-
ing traffic via middle mixes, Aqua can accommodate payload
traffic in excess of the constant rate of the link between a
pair of mixes. Every edge mix pair maintains an encrypted
session so that middle mixes cannot identify the circuit id
of packets they forward.
Security. Because the traffic on each link is encrypted using
a secret key shared only between adjacent nodes, the bit-wise
content appears random and uncorrelated with the traffic
on other links. Thus, the attacker can learn nothing by
observing the content of network traffic. If a middle mix
is compromised, it can learn the edge mixes of encrypted
packets it forwards, but not the circuit id or clients of the
packet’s flow.

3.3 Traffic-analysis Resistance
Despite bitwise unlinkability, an attacker can observe and

correlate the time series of encrypted packets on different
links. Changes in the payload rate of a flow, dynamic ca-
pacity changes of network links (e.g. due to congestion),
or manipulation of encrypted traffic by an active attacker
can cause correlated changes in the time series of encrypted
traffic along a flow’s path. To defeat such traffic analysis,
the anonymity network must craft the time series of pack-
ets on each link such that the attacker is unable to infer
which clients are communicating. Such traffic obfuscation
can be accomplished by batching payload traffic from dif-
ferent flows, splitting payload traffic across multiple paths,
adding artificial delay to payload traffic, or adding artificial
chaff traffic.

Aqua uses a combination of chaffing and delayed flow
start-up for traffic obfuscation. Moreover, Aqua uses a dif-
ferent strategy for traffic obfuscation in the core and at the
edges of the network. In the Aqua core, we use uniform
rate chaffing, because there is enough statistical multiplex-
ing of inter-mix traffic that aggregate rate changes are in-
frequent. The multi-path routing at the core further helps
to smoothen traffic imbalances among the mixes. At the
network edge, we devise a novel dynamic chaffing strategy
for traffic obfuscation, which can take advantage of tempo-
ral and spatial correlation among different clients’ payload
traffic to achieve k-anonymity in large sets at low overhead,
despite the bursty nature of individual flows. We describe
both methods in more detail below.

3.3.1 Traffic obfuscation in the core
Aqua’s traffic obfuscation in the core is conceptually sim-

ple: all mixes transmit to all other mixes at a constant rate.
Mixes partition time into small periods called batch periods.
During each period, each mix sends the same number of

same-sized packets to every other mix. This includes pack-
ets transmitted by a mix in its roles as both edge mix and
middle mix. The packets transmitted by a mix during period
t include the payload data received during period t− 1.
Specifically, each mix transmits n packets to each of m

mixes during a batch period. At the beginning of a period,
each mix assigns the payload data received in its role as a
middle mix, and assign it to the designated edge mixes. If
payload data worth more than n packets are assigned to
a given edge mix, the excess packets are dropped. Then,
the mix randomly assigns payload data it received in its
role as an edge mix to middle mixes with available payload
capacity in its packet slots. If there is more payload data
than available slots, excess packets are dropped. If there are
more slots than payload data (the common case), then chaff
data is added as needed to fill the n packets. To achieve a
constant rate, each mix schedules a packet for transmission
a fixed interval after the previous packet was acknowledged
(retransmitting dropped packets as needed).
To efficiently accommodate temporal variations in aggre-

gate payload rates in the core, our design allows the mix-to-
mix link rates to vary over time, but the target rates on all
links are identical at any instant.
Security. Consider the security properties of mixes ex-
changing bidirectional encrypted traffic at a fixed target
rate. Due to flow and congestion control, the achieved rate
on a link may differ from the target. The important thing to
note, however, is that the actual rate on a link reflects only
the capacity and congestion state of the underlying network,
and reveals nothing about the payload it carries. Thus, the
constant rate traffic is perfectly resistant to passive traffic
analysis. Moreover, actively delaying or dropping traffic on
a link does not reveal any useful information, because the
downstream node’s outgoing stream rate will not be affected
(it simply adds more chaff). Changes in the target rate on
all inter-mix links over time reveal some information about
the aggregate payload traffic rate in the core. Given the as-
sumed high degree of flow multiplexing in the core, however,
it reveals nothing about individual flows or the communicat-
ing partners.

3.3.2 Traffic obfuscation at the edges
To resist traffic analysis, Aqua must also obscure traffic on

client links. The target rate of encrypted traffic on a client
link can change dynamically, to accomodate variations in a
client’s payload traffic efficiently. However, any target rate
adjustment on a client link must coincide with an equivalent
adjustment by a set of clients that form a anonymity set
called a kset. The target rate of a client link is the sum of
the target rates of all ksets the client is currently a member
of. This technique allows Aqua to accommodate variations
in clients’ payload traffic rates while ensuring that any given
client’s observable rate change is indistinguishable from that
of k other clients. By seeking to form ksets out of clients
with correlated payload traffic, Aqua can reduce overhead
for a given anonymity set size.
Design. A client announces to its edge mix when it has
an incoming or outgoing flow it would like to start, along
with its available bandwidth capacity. The mix in turn an-
nounces this information to other mixes, without revealing
the client’s id.
Mixes wait until they have collectively received about

k + ∆ (∆ defined below) announcements each for incom-

ing and outgoing flows, or a timeout occurs. When pos-
sible, mixes match announcements for flows with a similar
expected rate. When a timeout occurs with less than k
matching announcements, additional clients with available
link capacity are randomly selected to join a kset, even if
they have no flows to start. At this point, the mixes ask the
clients in the kset and their edge mixes to simultaneously in-
crease their current client link rates by a specified kset rate.
The kset rate is equal to the minimum available capacity
of all selected clients, or the maximal requested flow rate,
whichever is lower. We describe a simple, greedy algorithm
for kset formation in more detail in Section 4.3.

Once the clients in a kset have jointly increased their rates,
they must eventually decrease their rates by the kset rate
simultaneously, to avoid leaking any information about in-
dividual flows. Clients whose flows end early must continue
to send chaff at the required rate. They are free to start
new flows within the anonymity set to fill the available ca-
pacity. When one of the k clients fails or departs abruptly,
the remaining members of an anonymity set must immedi-
ately reduce their rates by the kset rate. To tolerate such
departures more gracefully, sets may be formed with more
than k clients initially, as described below.

In practice, the implementation operates in time-
synchronized epochs. A typical epoch time might be 30 sec-
onds. Aqua collects flow announcements and forms ksets
during the present epoch, and starts these ksets at the be-
ginning of the next epoch. In Aqua, all clients send and
receive at a low constant baseline rate. This make sense for
applications with many small flows and background signal-
ing traffic, like BitTorrent.
Forming ksets. To achieve k-anonymity, a kset must in
practice include k + ∆ members. The extra ∆ clients are
required to compensate for kset members attached to com-
promised edge mixes and clients controlled by the attacker.
While not required for anonymity, some number of extra
kset members can also reduce the need for ungraceful kset
shut-downs due to client or mix failure. Consider the case of
M mixes, m∗M of which are controlled by the attacker, and
C clients, c ∗C of which are controlled by the attacker. Un-
compromised clients attach to random mixes, but the com-
promised clients attach evenly to the uncompromised mixes.

First, to limit the impact of compromised mixes, Aqua
requires that each mix contribute an equal number of clients
((k+∆)/M) to each kset. To compensate for clients attached
to compromised mixes, we need to add m(k +∆) clients to
a kset; to compensate for compromised clients attached to
the uncompromised mixes, we need to add (1−m)(k+∆)c
clients to a kset. To tolerate client and mix failures, we add
an empirical number r clients. Thus, ∆ = r + k mc−m−c

m+c−mc−1
.

For instance, when k = 100; r = 0; c = m = 0.1;∆ = 23.45.
The required number of clients ((k +∆)/M) contributed

to a kset by each mix is generally a fractional value. There-
fore, some mixes have to contribute one more client than
others in practice. The mixes that contribute an additional
client must be chosen deterministically to avoid any bias
towards compromised mixes, and fairly to avoid load im-
balance. Aqua uses consistent hashing among the mixes to
make a deterministic choice, parameterized by a global kset
sequence number for load balance.
Security. Let us consider the subgraph of client links whose
rates change in response to a flow start-up/shut-down. The
set of clients who might be communicating is simply the

Figure 2: Rendezvous design. Each line is a full
three-hop circuit (Entry/Middle/Exit Mix). For the
flow itself (not shown), the rendezvous Mix acts as
the exit mix of the client’s circuit and is concate-
nated to the server’s circuit.

number of clients connected to the subgraph. Aqua enforces
the following conditions regarding the observable link rates:

1. A rate increase by r bits/s in response to a flow start-
up must simultaneously affect a subgraph s that con-
nects at least k +∆ clients.

2. A rate decrease in response to a flow shut-down, mix
failure or client departure that reduces s to less than k
members must be accompanied by a simultaneous rate
reduction by r in the entire s.

These conditions ensure that the attacker cannot infer
which client within a set of k clients is communicating. The
reason is that any observable rate change is consistent with
the start-up or shut-down of a flow by any client within the
set of k clients. Each kset is effectively an instance of a
uniform rate chaffed network, like the one used in Aqua’s
core.

3.4 Rendezvous
For clients who wish to be reached anonymously (receiver

anonymity), as is the case in BitTorrent, Aqua provides a
rendezvous mechanism similar to Tor’s hidden service mech-
anism. This design comprises four components: a hidden
receiver, a directory server, the rendezvous point, and the
introduction point. The hidden receiver is a client who of-
fers a (hidden) service (e.g., BitTorrent) to other clients of
the anonymity network. The directory server keeps track
of where to contact hidden receivers. The rendezvous point
relays the payload data traffic between a client and the hid-
den receiver. The introduction point is where the hidden
receiver listens for connections.
We illustrate this design for rendezvous in Fig. 2. Note

that all lines in Fig. 2 represent full three-hop Aqua cir-
cuits, thus providing anonymity for both client and hidden
receiver with respect to the other components. A hidden
receiver starts by requesting that an introduction point lis-
tens for incoming connections from clients (1). The receiver
then publishes the contact information of its introduction
point in the directory service (2). Clients find out about
the receiver out of band and look up its introduction point
in the directory (3). For robustness, a receiver can have
several introduction points. The client then requests that

a rendezvous listens for incoming connections from the re-
ceiver on its behalf (4) and notifies the receiver through the
introduction point (5 & 6). Finally, the receiver connects
to the client (7 & 8) after which, the two can communicate
through the rendezvous. Note that the final communications
path has six mixes. The rendezvous node itself acts as the
edge mix at the far end of both the client’s and the hidden
receiver’s circuit.
Security. Rendezvous provides both sender and receiver
anonymity, because it concatenates two sender-anonymous
circuits. Because each side chooses its own set of edge mixes,
neither client’s anonymity depends on choices made by the
other client.

3.5 Attacks
Next, we discuss attacks within our threat model and how

Aqua defends against them.
Passive traffic analysis attack. The traffic rate on links
in the core does not depend on individual payload flows.
Traffic analysis on core links is therefore unproductive. At
the edges, all rate changes coincide on at least k client links.
Therefore, the attacker cannot tell which of the k clients are
communicating.
Active traffic analysis attack. Here, the attacker manip-
ulates the flow of encrypted, chaffed Aqua traffic by delaying,
dropping or replaying packets. Doing so has no impact on
the rate of downstream chaffed traffic, so it does not help the
attacker trace payload flows. For that, the attacker needs
access to a client’s payload flow at the other end of a Aqua
circuit. However, this case is ruled out by the threat model.
Compromised middle mix. The attacker cannot decrypt
the contents or circuit ids of packets its forwards, but learns
the edge mixes between which a packet travels. To find out
which client is communicating, the attacker would have to
(i) estimate the aggregate payload traffic between a pair of
edge nodes based on the isolated sample packets it sees, (ii)
analyze traffic at the two edge mixes to determine the set
of attached clients who share ksets, and (iii) infer which of
these clients are communicating by correlating rate changes
in a kset with changes of the observed aggregate payload
rate. With a single flow between a pair of mixes, this could
conceivably allow an attacker to narrow the candidate client
set to (k + ∆)/M ; per our assumption, however, a large
number or flows (and thus ksets) exist between any pair of
mixes at any time, making this attack infeasible in practice.
Compromised rendezvous mix or hidden receiver. A
client’s anonymity is not affected by a compromised ren-
dezvous mix or hidden receiver, because it depends only on
the edge mixes chosen by the client.
Compromised clients (Sybil attack). Clients controlled
by the attacker effectively reduce the anonymity provided by
each kset they participate in. Aqua compensates by increas-
ing kset sizes based on the given bound on the proportion
of compromised clients, to ensure a minimum of k uncom-
promised clients in the set. Thus, the attack is not effective
as long as the proportion remains within the bound.
Long-term intersection attacks. In a long-term intersec-
tion attack, the attacker takes advantage of repeated com-
munication between a pair of clients to observe which clients
are (almost) always part of a kset. Over a long time, the in-
tersection of these successive ksets will shrink towards the
communicating clients. The attack requires that a pair of
clients communicate repeatedly and in a way that the at-

tacker can predict (e.g., by infering that clients are likely to
communicate whenever they are online). In general, users of
anonymizing networks must take care to avoid predictable
communication patterns (e.g., not go online only when com-
municating) to avoid this attack.

4. EVALUATION
In this section, we use trace-driven simulations to analyze

the bandwidth overhead of traffic chaffing and the latency
of the Aqua design. We show that Aqua offers strong pri-
vacy guarantees at low overhead in terms of throughput and
latency.
We evaluate the performance of Aqua relative to other

representative approaches for anonymous communication.
To provide an apples-to-apples comparison of the network
overhead of alternative designs, we extract the key mech-
anisms for anonymity and traffic analysis resistance for
each anonymity system and evaluate their impact on per-
formance. At a high level, we find that other anonymous
system designs either sacrifice performance or scalability,
whereas Aqua achieves both on BitTorrent workloads. To
summarize our key results, we find that on this workload,
Aqua has low overhead (10-30%) and low throttling (10-
50%), significantly lower than of other anonymity system
designs. It accomplishes this with latency that is a small
fraction (12%) larger than in onion routing systems.
We discuss the dataset that we use for this analysis in the

next section. Then we describe the goals of our evaluation
in Sec. 4.2 and detail the systems models that we evaluate in
Sec. 4.3. We present the results of our evaluation in Sec. 4.4
and discuss limitations of our simulation-based analysis in
Sec. 4.5. We close with some preliminary results from a
prototype implementation of Aqua in Tor in Sec. 4.6.

4.1 Dataset
We use trace-based simulations to evaluate the efficiency

and privacy of Aqua and some of its related work. Specif-
ically, we use the Ono dataset, a large collection of trace
data gathered from BitTorrent users [7]. This data is gath-
ered by Ono, a plugin for the Vuze BitTorrent client that
attempts to bias peer connections toward relatively nearby
hosts to reduce cross-ISP traffic in P2P systems. In addition
to providing this service, the plugin collects anonymous in-
formation about transfer rates, ping latencies and traceroute
paths between BitTorrent peers for connections established
by participating users. Ono collects no Personal Identifiable
Information (PII) nor information about the files that users
download; users can opt out of data collection at any time.
To analyze the overhead in terms of transfer rates, we use

flow samples from real BitTorrent transfers. The data con-
tains per-flow transfer rate samples recorded at 30-second
intervals for each peer in the trace. On average there are
over 1,000 users online at any time. We use the trace of
November 2010, which includes approximately 20 million
samples per day. We infer the bandwidth capacity of each
peer using the maximum transfer rate observed during the
month. To analyze the delay overhead, we use latencies mea-
sured from traceroutes issued by the BitTorrent hosts. This
data includes more than 200 million measurements.

4.2 Goals
We focus on evaluating the network overheads of the Aqua

design and comparing them with alternative designs for

Model (Example) Technique Anonymity set
Constant constant rate C N
Broadcast (P 5) broadcast group k k

P2P (Tarzan) peer group n min(nhops, N)
Aqua k-set k

Table 2: Models evaluated in this section. The total
number of participating hosts is N .

anonymous communication. Specifically, we quantify the
costs of each system according to the following metrics:
Overhead. We define the overhead as the number of chaff
bytes each endpoint sends divided by the number of all bytes
(chaff and payload) sent. The overhead captures the amount
of additional bandwidth consumed by a design to resist traf-
fic analysis.
Throttling. We define throttling as follows. For each end-
point, we define the number of throttled bytes as the ab-
solute difference between the number of payload bytes sent
in the BitTorrent trace and those sent by a given simulated
system during the same period. We then divide the num-
ber of throttled bytes by the total number of payload bytes
sent in the BitTorrent trace. The throttling indicates the
slowdown imposed by an anonymity network as compared
to using unmodified BitTorrent.
Latency. We define latency overhead as the additional de-
lay due to using multiple hops through an anonymity net-
work compared to using direct Internet paths.

4.3 System Models
We evaluate four models of anonymity systems, represen-

tative of designs described in Sections 2 and 3. Table 2 gives
an overview of the different models. We assume that hosts
in the core of the network (mixes) have sufficient capacity to
support all flows in the system without throttling. Further,
we quantify the anonymity of each system as the number of
clients within an anonymity set.
Constant-rate. In the constant-rate model, online end-
points exchange constant traffic with their edge mix at
their capacity rate. Online but inactive endpoints exchange
only chaff traffic with their edge mix. When endpoints be-
come active, they replace chaff traffic with payload traffic.
The constant-rate model achieves an anonymity equal to the
number of online endpoints in the system.
Broadcast. [Example: P 5 and DC-Nets] The broadcast
model partitions online endpoints into fixed size broadcast
groups. Endpoints within each group share a broadcast
channel, so every message to a single endpoint is broadcast
to all endpoints in the same group. Group members al-
ways send and receive traffic at a constant rate equal to the
minimum capacity of all group members, pad payload traf-
fic with chaff traffic as needed, and throttle payload traffic
when its speed exceeds this rate. To limit throttling, we as-
sign endpoints to broadcast groups based on their capacity in
our simulations. The broadcast model provides k-anonymity
among the endpoints of each broadcast group.
P2P. [Example: Tarzan] The P2P model assumes traffic is
routed only between neighbors in the P2P overlay. Each pair
of neighbors maintains a bidirectional, constant-rate stream,
into which payload traffic can be inserted. The constant rate
of each stream should satisfy two constraints: a) the sum of
rates of streams from/to an endpoint must be no larger than

its sending/receiving capacity; b) any stream’s rate must be
no larger than the sender’s sending rate and the receiver’s
receiving rate. The anonymity of the P2P model increases
exponentially with the number of P2P hops. Specifically, it
is min(nh, N), where n is the number of P2P connections,
h is the number of hops and N is the size of the system. We
use h = 3 and n = 2, 5, 10.
Aqua. Aqua is the design presented in Section 3, where
endpoints form ksets and use mixes to route their traffic.
The Aqua trace-driven simulations model ksets for various
k. The simulator obfuscates traffic by adding chaff or throt-
tling connections based on the nominal rate of the kset (i.e.,
the minimum available capacity in the kset). A peer is not
allowed to exit the system until its kset is torn down; if the
associated flow is inactive, the peer must continue to send
chaff traffic at the kset rate. In our simulations, Aqua
assigns peers to ksets using a greedy online algorithm that
matches peers with similar capacities. During each round
all N peers that need to join ksets are ordered according to
their capacity. We assign the first k peers to the same kset,
the second k peers to another kset, and so on until all peers
are assigned to a kset. The last (N mod k) peers must post-
pone transfers until their kset is complete (e.g., from peers
with new flows starting in the next round). Aqua provides
k-anonymity among the members of a kset.

4.4 Results
Next, we present the simulation results. We find that on

the BitTorrent workload, Aqua incurs substantially less over-
head and throttling than other anonymity system designs
(e.g., as little as 1/3 of the overhead and 1/2 of the throt-
tling when compared to an alternative P2P-based anonymity
system), and its delay from multiple hops is not sufficiently
large to impact performance for P2P file sharing (the delay
is not significantly larger than onion routing).

4.4.1 Endpoint Performance
At the endpoints, the network cost of anonymizing sys-

tems is overhead from chaff traffic and throttling to main-
tain traffic-analysis resistance. With the exception of Aqua,
we find that the evaluated models sacrifice performance,
scalability or both. Importantly, ksets efficiently provide
anonymity for the large numbers of flows generated by Bit-
Torrent; further, Aqua’s infrastructure-based mixes provide
the relatively large bandwidth resources required for resist-
ing traffic analysis.
Methodology. To evaluate the performance of each sys-
tem design, we use the timeseries of BitTorrent flows form
the Ono dataset. In particular, when a peer in the trace
initiates a flow, we simulate the protocols described in the
previous section. Each system imposes overhead and throt-
tling, which we track and compare to the empirical traces as
a baseline representing performance without any anonymity.
To evaluate large kset sizes (i.e., 1000) in Aqua, we need

more concurrent users than exist in our dataset. To generate
a larger set that is representative of the original dataset, we
stack daily traces by modifying timestamps t in the trace to
be t/(24 ∗ 60 ∗ 60). This means two peers online at the same
time of day are online concurrently in the stacked traces
regardless of which day of the month they were online.
Overhead. We show the overhead of constant-rate, broad-
cast (e.g., P 5), P2P (e.g., Tarzan), and Aqua designs in
Fig. 3. Aqua incurs significantly less overhead than other

designs, mainly because ksets efficiently match peers’ pay-
load flows, requiring only moderate chaff traffic. Below, we
describe the results in more detail.
Constant-rate. In the Constant-rate design, peers exchange
chaffed traffic at their capacity rate. In Fig. 3, the median
overhead over all peers is 0.95 because half the peers utilize
at most 5% of their bandwidth capacity over the duration
of the trace. As a result, these peers must generate 95%
of chaff to maintain their target rate. Hence, the overhead
is inversely proportional to the peers’ bandwidth utilization,
which leads to high overhead, even in the case of BitTorrent.
Broadcast. With the Broadcast design, each message is
broadcast to every group member. With k group members,
one unit of payload traffic generates (k − 1) units of chaff.
Thus, the overhead of each group member is approximately
(k-1)/k on average, approaching 1 as k increases. We see in
Fig. 3 that the median overhead of the broadcast design is
always above 0.95. For example, for k=10, the peers’ median
overhead is 0.97. The higher overhead in the simulations is
explained by peers running out of payload during their slot
and padding with chaff. High overhead makes the broadcast
design unsuitable for bandwidth intensive applications like
BitTorrent.
P2P. In the P2P design, each peer keeps constant rate
streams with a fixed number of other peers, and inserts
payload into these streams; that is, at every time unit, the
sum of chaff bytes and real traffic bytes is constant. When
forming the P2P overlay paths, flows may be unevenly dis-
tributed over streams (i.e., several flows may share the same
links), meaning some number of streams generate only chaff
traffic (pure overhead) while others generate only payload
traffic. As the number of P2P connections n increases the
number of chaffed overlay links increases, while the number
of payload flows remains constant. Thus, the overhead ratio
increases for P2P as k increases.
Aqua. For Aqua, the overhead comes from chaff traffic gener-
ated by kset members with less payload than the kset trans-
fer rate. This chaff traffic is generated only while a kset is
active. Because ksets have relatively short lifetimes, peers
spend less time generating chaff traffic than in the other
designs, thus contributing to a significantly lower overhead.
Furthermore, we observe that the overhead ratio decreases
with larger k because the amount of traffic (chaff or pay-
load bytes) sent over each link is constrained by the slowest
connection. Larger ksets are likely to include relatively low-
bandwidth peers, which reduces the rate at which each host
sends traffic. These lower rates lead to relatively lower over-
head for flows containing only chaff traffic.
Throttling. We show the throttling results for the
constant-rate, broadcast, P2P, and Aqua designs in Fig. 4.
At a high level, the volumes of chaff traffic required by
Broadcast and P2P are quite large; Aqua reduces this throt-
tling by grouping peers with similar bandwidth demands
into the same ksets, then tearing down ksets as soon as all
members’ flows have completed. The constant-rate design
has no throttling, as expected, at the expense of high over-
head.
Constant rate. The constant-rate design has no throttling
because all endpoints always send or receive traffic at their
capacity rate.
Broadcast. Throttling in the Broadcast design depends on
the groups’ capacities and sizes k, and the payload band-
width demand of peers. The impact of groups’ capacities on

Constant Broadcast P2P Aqua
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Overhead of Traffic Obfuscation at the Edges

Designs

O
ve

rh
ea

d
/ c

ap
ac

ity

Download
Upload

Figure 3: Overhead of traffic obfuscation at the
edges for the different designs. Shown on the y axis
are the median, 10th and 90th percentile of the over-
head. The bars from left to right for Broadcast, P2P,
and Aqua correspond to k equals 10, 100, and 1,000.
Note that Constant-rate is not parameterized by k,
so we show its overhead for the number of peer in
our traces.

throttling is minimal in our simulations because we assign
peers to broadcast groups based on their bandwidth capac-
ities. The main factor affecting the degree of throttling is
k because the capacity available for payload in a broadcast
group is 1/k. We see in Fig. 4 that there is little throttling
for k = 10 because there is enough available bandwidth to
satisfy peers’ demand rate (5% in the median case). How-
ever, throttling increases considerably for larger k because
the bandwidth available for payload is insufficient to meet
peers’ demands.
P2P. In the P2P model, the number of overlay links in-
creases with n and so the capacity of individual P2P links
decreases. As a result, the throttling increases with the size
of the anonymity set.
Aqua. With Aqua, the median download throttling remains
between 0.02 and 0.21 for all values of k. When all peers in
a kset have sufficient capacity, flow rates ramp up without
throttling. When a fraction of peers finish their flows before
others, there is throttling for idle peers until all peers can
ramp down simultaneously. The impact of this throttling is
limited because flows in BitTorrent are short-lived.
Throttling increases with k = 1, 000 because it is more

likely that a high-capacity peer joins a kset with a lower-
capacity peer, forcing the high-capacity peer to throttle its
throughput to that of the lowest-capacity peer. A potential
optimization is to prevent such ksets from forming unless
there is no alternative option, or even delaying a transfer to
wait for a sufficient number of peers with similar capacity
to appear.

4.4.2 Mix performance
Next, we present the results for network overheads in-

curred by routing traffic over multiple hops, where traffic

Constant Broadcast P2P Aqua
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Throttling of Traffic Obfuscation at the Edges

Designs

T
hr

ot
tle

d
by

te
s

/ B
itT

or
re

nt
 u

til
iz

at
io

n

Download
Upload

Figure 4: Throttling of the different designs due to
traffic obfuscation at the edges. Shown on the y
axis are the median, 10th and 90th percentile of the
throttling. The bars from left to right for Broadcast,
P2P, and Aqua correspond to k equals 10, 100, and
1,000.

is mixed and chaffed. Note that these results apply only
to designs that use mixes, namely, Constant-rate and Aqua.
We find that, in general, Aqua has low overhead in the core,
because multipath routing evenly balances payload traffic
across mixes, reducing the need for chaff.
Methodology. For this evaluation, we use a twenty-mix
full mesh topology, and simulate single-path routing, multi-
path routing, and perfect routing. Here, perfect routing
assumes that flows can be split and routed perfectly among
all the mixes and links, i.e., distributed evenly so as to mini-
mize the necessary chaff traffic. For multi-path routing, the
number of paths for each flow is the number of mixes mi-
nus two, as described in Section 3. We provision the mix
network with aggregated bandwidth required by the worst
case, Constant-rate with single path routing.

In Constant-rate simulations, each pair of mixes exchange
traffic at the same constant rate, which is the maximum
payload rate on all links over all the simulation time. In
Aqua simulations, we allow link rates to vary uniformly every
hour, so at any time, the rates on all links are identical, and
equal to the maximum link payload rate in this hour.
Overhead. We show the overhead of Constant-rate and
Aqua in Fig. 5, each with three routing schemes, single-
path routing, multi-path routing, and perfect routing, re-
spectively. Although Constant-rate with single-path routing
has a median overhead above 0.49, the overhead is reduced
to 0.1 when multi-path routing is used.

Compared to Constant-rate, Aqua mixes can dynamically
change rates. As a result, overheads are significantly lower—
less than 0.01 in all cases. Taking Aqua receive rates as
an example, we find that overhead is 0.0093 for single-path
routing, and less than an order of magnitude smaller when
using multi-path (0.00088). While the absolute difference is
small in this case, it is relative to a large capacity required
for Constant-rate traffic. Thus, in practice multipath can

Constant Aqua
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Overhead of Traffic Obfuscation in the Core

Designs

O
ve

rh
ea

d
/ c

ap
ac

ity

Download
Upload

Figure 5: Overhead for traffic obfuscation in the
core for different designs. Shown on the y axis are
the median, 10th and 90th percentile of the over-
head. The bars from left to right for Constant-rate
and Aqua correspond to single-path, multi-path, and
perfect routing.

lead to substantial overhead savings relative to single-path
routing.

4.4.3 Multi-hop Latency
Next, we consider the question of how much additional

latency is imposed by each anonymity system and determine
its impact on transfer rates. Our key finding is that latency
for Aqua is comparable to that of onion routing, and the
added latency will not significantly impact the rates for the
vast majority of BitTorrent flows in our dataset.
Methodology. Our deployment model for Aqua includes
mixes that are located in hosting providers in the core of the
network, e.g., in well-connected points of presence (PoPs).
To model the latency overhead in Aqua, we would like to
use empirical delays from peers in edge networks to hosts in
popular PoPs, and delays between hosts in popular PoPs.
Furthermore, we want to include a set of delays exclusively
between peers in edge networks to compare with an approach
such as Tarzan.
To address these needs, we use latencies gathered from

200 million traceroutes between Ono users between March
1, 2010 and June 1, 2010. These measurements provide end-
to-end latency measurements between end-users, as well as
hop-by-hop delays to intermediate routers.
Estimating the delay through an Aqua deployment re-

quires a set of mix locations and the latencies between
them. We further leverage the traceroute dataset by as-
suming mixes will be placed in networks that are traversed
by a large fraction of paths between end users. Specifically,
we count the number of distinct source/destination pairs
that traverse each AS boundary (using IP-to-AS transla-
tion), then use the 100 most popular networks as mix lo-
cations. We obtain the latency between a client and mix
using the traceroute-based delay measured when the client
probed the mix location. Because most pairs of mix lo-

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Latency of Multiple Hops

Median latency (ms)

C
D

F
 o

f p
at

hs

Direct
Onion routing
Aqua (10ms)
P2P

Figure 6: Median latency for paths using the differ-
ent designs, based on latency data gathered from
end users. The cumulative distribution function
shows that Aqua with 10ms delay has only 12%
higher latency than onion routing and 20% lower la-
tency than an approach that routes exclusively over
end users (labeled P2P).

cations are traversed by at least one end-to-end traceroute
measurement, we obtain a nearly complete matrix of delays
between our selected mix locations. Our simulation does
not use paths for which our dataset does not contain a delay
meaurement.

To avoid being biased by paths through large tier-1 net-
works, we pick at most two mix locations per AS. The re-
sulting set of locations spans 70 ASNs and 25 countries in
North America, Europe, Asia and South Africa.

For each set of latencies measured directly between end-
points (i.e., the last hop of a traceroute), we require there
be at least three sample values and take the median latency.
We further filter out latencies that are unreasonably large
(>1000ms), as they are indicative of severe buffer bloat or
other transient performance problems that we do not intend
to capture with this analysis. Specifically, we wish to cap-
ture the additional delay from mix hops that are located in
the core of the network and not subject to last-mile delays.
Results. We obtained simulation results for latencies ac-
cording to the following models:

• Aqua. There are two concatenated mix circuits, mean-
ing 6 mix hops in each direction (12 hops total). Each
mix is located in a well-connected network as described
above, endpoints are located in access networks, and
we show results for a batch period of 10ms.

• Circuit-switched (Onion). There are two concate-
nated onion circuits, resulting in six distinct hops be-
tween endpoints, traversed once in each direction (12
hops total). Each onion hop is located in a PoP, the
endpoints are located in access networks.

• P2P (Tarzan). There are six onion hops, each of
which is located in an access network.

We sample 100,000 pairs of hosts, simulate latency over
1000 randomly selected paths, then report results for the
median latencies2. Figure 6 shows CDFs, where each point
(x, y) represents the latency value (x) for a single source-
destination pair (cumulative fraction, y). There is one curve
for the direct path between a source and destination (la-
beled “direct”), and one curve each for the median laten-
cies in Aqua, onion routing and P2P routing (labeled as
“[Aqua,Onion routing,P2P]”).

While it is not surprising that there are higher delays
in Aqua from six additional overlay hops in each direction
compared to direct-path routing, the median latencies stay
within a constant factor of the direct-path delays. For ex-
ample, the median delay for Aqua latency is approximately
five times the median delay for direct path latency when us-
ing a delay of 10ms at each hop. Note that when compared
to onion routing, Aqua imposes only an additional 120ms
of delay due to buffering for chaffing at mixes. Thus, Aqua
offers resilience to timing attacks, at the cost of a modest
additional delay (12%) over Tor.
We observe that P2P routing has nearly 20% larger the

median latency when compared to Aqua with 10ms delays
at each hop. The reason is the latency of traversing last-
mile links at each hop in P2P routing, when compared to
latencies between mixes in Aqua located in the network core.
In the worst case, both Aqua and onion routing may suf-

fer latencies of one or two seconds. Focusing at the top
of Fig. 6, Aqua’s latency is a full second faster than P2P
routing. While both approaches suffer large delays in the
worst case, the impact on end-to-end performance differs.
For onion routing, which is circuit-based, a poor circuit
choice lasts until the circuit is torn down—potentially af-
fecting many flows. Importantly, Aqua picks paths on a
per-packet basis, limiting the impact of such poor choices.
Impact of Latency. We now consider the impact of addi-
tional delays on the maximum rate for a TCP flow over
a path and evaluate whether it impacts end-to-end perfor-
mance for an application like BitTorrent. We use the tradi-
tional formula

Rate = (1.2 ∗MSS)/(RTT ∗
√
loss)

and estimate the steady-state transfer rate for a flow experi-
encing 1% packet loss, using a maximum segment size (MSS)
of 536 bytes and the RTT of the 90th percentile of the dis-
tribution in Fig. 6. We then compare this steady-state rate
with the distribution of maximum transfer rates for peers
in our dataset (these are considered the peer capacity). For
each of the routing models considered in the previous sec-
tion, we estimate the end-to-end rate as the minimum of the
per-hop TCP connection in the multi hop overlay. Further,
we focus on upload rates because asymmetric bandwidth in
access networks implies that senders’ transfer rates are the
main bottleneck in BitTorrent. Last, we assume there are
10 simultaneous flows for each user, based on the average
number of parallel flows per peer in our dataset (9.6).
We find that the steady-state transfer rates for Aqua,

Onion and P2P routing are at least 10, 12.3 and 6.1KB/s, re-
spectively, for 90% of peers. By comparison, 90% of flows in
our BitTorrent traces have a send rate less than 13.4KB/s.
We then compare these per-flow rates with empirically mea-
sured peer capacities. When there are 10 parallel flows, we

2We found the average and median distributions to be nearly
identical and thus omit the average for clarity in the figures.

find that only 14.6% of paths experience throttling in the up-
load direction for Aqua (10% for Onion and 27% for P2P).
Thus, we believe that the delays incurred by overlay rout-
ing should not significantly reduce available capacity in the
system for the vast majority of peers and paths.

4.5 Caveats
Simulation limitations. Our simulation approach cap-
tures realistic session times, throughput capacities and con-
nection patterns for BitTorrent. However, our simulation
does not account for the following factors.

First, our trace data contains transfer rates along direct
paths between hosts, but the anonymous communication de-
signs induce additional latency from multiple hops. We do
not model these delays in our simulation but we showed that
they do not significantly impact the steady-state transfer
rates of existing direct-path flows.

Next, we do not simulate delays or bandwidth constraints
at mixes, except for those required for batching. We believe
this is reasonable because we expect mixes to be deployed in
hosted data centers where bandwidth and processing power
are sufficient to support large numbers of users.

Lastly, throttling and kset formation alter the empirical
transfer rates and session durations recorded in the trace.
This, in turn, would change how BitTorrent establishes fu-
ture connections in a real implementation. We do not model
these second-order effects.
Dataset limitations. There are several limitations of the
Ono dataset. We use an extensive dataset of empirical la-
tency and flow samples from end users that is representative
of paths between users in a P2P network. This does not
necessarily reflect the paths between end-users and content
providers such as CDNs and Web servers. Likewise, we do
not consider the performance impact of load at each mix,
though we expect the mix locations to be well provisioned.
Finally, there is bias in our empirical dataset in that it rep-
resents locations where BitTorrent usage is high. We believe
this is also where Aqua is most likely to be popular if it were
deployed today.

4.6 Preliminary implementation results
At the time of this writing, we have implemented Aqua’s

multipath routing component in Tor v0.2.2.37, which adds
approximately 3,000 lines of C code. The implementation
of traffic obfuscation as described in Section 3 is still in
progress. To quantify the CPU and memory usage of mul-
tipath routing, we performed a simple experiment that con-
sists of a client downloading a 100MB file from an Apache
server in a well provisioned network with nine Aqua pro-
totype mixes. The client’s download rate (averaged over
5 runs) is 9.12Mb/s for a direct connection, 7.52Mb/s with
single-path Tor, and 7.68Mb/s with the Aqua prototype. On
average, Tor proxies use 2% of CPU and 45MB or memory
and the Aqua prototype mixes use 2.1% of CPU and 46MB
of memory. As we can see, the Aqua prototype with multi-
path routing introduces negligible overhead relative to Tor.

5. CONCLUSION
We have introduced Aqua, an efficient traffic-analysis

resistant anonymity network for BitTorrent applications.
Aqua derives its efficiency from using different traffic
obfuscation mechanisms in the core and at the edges of the
network. In the core, Aqua employs uniform rate chaffing

to take advantage of infrequent changes in aggregate traffic.
Furthermore, multipath routing disperses traffic hot spots
in the core to minimize chaff overhead. At the edges,
Aqua dynamically groups peers with correlated payload
traffic patterns and couples their rate changes to efficiently
provide k-anonymity. We showed that these mechanisms
scale to much larger anonymity sets than existing work
while achieving latency low enough to have minimal impact
on TCP bulk performance in BitTorrent workloads. These
properties allow Aqua to anonymize BitTorrent traffic with
high bandwidth efficiency. Our future work aims at provid-
ing strong anonymity to a broader range of applications.

Acknowledgements. We thank the anonymous review-
ers and our shepherd, Katerina Argyraki, for their helpful
feedback.

6. REFERENCES
[1] HideMyAss.com doesn’t hide logs from the FBI. http:

//blog.hidemyass.com/2011/09/23/lulzsec-fiasco/.
[2] Private communication with a large European ISP, 2012.

[3] Bamford, J. The NSA Is Building the Country’s Biggest
Spy Center (Watch What You Say), 2012.
http://www.wired.com/threatlevel/2012/03/ff_
nsadatacenter/all/1.

[4] Berthold, O., Federrath, H., and Köpsell, S. Web
MIXes: A system for anonymous and unobservable Internet
access. In Proceedings of Designing Privacy Enhancing
Technologies: Workshop on Design Issues in Anonymity
and Unobservability (July 2000), H. Federrath, Ed.,
Springer-Verlag, LNCS 2009, pp. 115–129.

[5] Chaum, D. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM 24,
2 (February 1981).

[6] Chaum, D. The dining cryptographers problem:
Unconditional sender and recipient untraceability. Journal
of Cryptology 1 (1988), 65–75.

[7] Choffnes, D. R., and Bustamante, F. E. Taming the
torrent: A practical approach to reducing cross-ISP traffic
in P2P systems. In Proceedings of SIGCOMM (August
2008).

[8] Dai, W. Pipenet 1.1. Post to Cypherpunks mailing list,
November 1998.

[9] Danezis, G. The traffic analysis of continuous-time mixes.
In Proceedings of Privacy Enhancing Technologies
workshop (PET 2004) (May 2004), vol. 3424 of LNCS,
pp. 35–50.

[10] Danezis, G., Dingledine, R., and Mathewson, N.
Mixminion: Design of a Type III Anonymous Remailer
Protocol. In Proceedings of the 2003 IEEE Symposium on
Security and Privacy (May 2003), pp. 2–15.

[11] Dingledine, R., Mathewson, N., and Syverson, P. Tor:
The second-generation onion router. In Proceedings of the
13th USENIX Security Symposium (August 2004).

[12] Freedman, M. J., and Morris, R. Tarzan: A peer-to-peer
anonymizing network layer. In Proceedings of the 9th ACM
Conference on Computer and Communications Security
(CCS 2002) (Washington, DC, November 2002).

[13] Furukawa, J., and Sako, K. An efficient scheme for
proving a shuffle. In In Proceedings of CRYPTO’01 (2001),
Springer-Verlag, pp. 368–387.

[14] Goldschlag, D. M., Reed, M. G., and Syverson, P. F.
Hiding Routing Information. In Proceedings of Information
Hiding: First International Workshop (May 1996),
R. Anderson, Ed., Springer-Verlag, LNCS 1174,
pp. 137–150.

[15] Gülcü, C., and Tsudik, G. Mixing E-mail with Babel. In
Proceedings of the Network and Distributed Security
Symposium - NDSS ’96 (February 1996), IEEE, pp. 2–16.

[16] Juels, A. Dining cryptographers revisited. In Advances in
Cryptology (EUROCRYPT 2004), Springer LNCS 3027
(2004), pp. 456–473.

[17] Katti, S., Jeff, J. C., and Katabi, D. Information
slicing: anonymity using unreliable overlays. In Proceedings
of the 4th USENIX conference on Networked systems
design & implementation (Berkeley, CA, USA, 2007),
NSDI’07, USENIX Association, pp. 4–4.

[18] Landsiedel, O., Pimenidis, L., Wehrle, K.,
Niedermayer, H., and Carle, G. Dynamic multipath
onion routing in anonymous peer-to-peer overlay networks.
In Proceedings of GLOBECOM (2007), pp. 64–69.

[19] Larsson, S., Svensson, M., de Kaminski, M.,

RÃűnkkÃű, K., and Olsson, J. A. Law, Norms, Piracy
and Online Anonymity: Practices of De-identification in
the Global File Sharing Community. Proceedings of Journal
of Research in Interactive Marketing 6, 4 (2012).

[20] Levine, B. N., Reiter, M. K., Wang, C., and Wright,
M. K. Timing attacks in low-latency mix-based systems. In
Proceedings of Financial Cryptography (FC ’04) (February
2004), A. Juels, Ed., Springer-Verlag, LNCS 3110,
pp. 251–265.

[21] Möller, U., Cottrell, L., Palfrader, P., and
Sassaman, L. Mixmaster Protocol — Version 2. IETF
Internet Draft, July 2003.

[22] Neff, C. A. A verifiable secret shuffle and its application
to e-voting. ACM Press, pp. 116–125.

[23] Øverlier, L., and Syverson, P. Locating hidden servers.
In Proceedings of the 2006 IEEE Symposium on Security
and Privacy (May 2006), IEEE CS.

[24] Rennhard, M., and Plattner, B. Introducing MorphMix:
Peer-to-Peer based Anonymous Internet Usage with
Collusion Detection. In Proceedings of the Workshop on
Privacy in the Electronic Society (WPES 2002)
(Washington, DC, USA, November 2002).

[25] Shane, S., and Burns, J. F. U.S. Subpoenas Twitter Over
WikiLeaks Supporters, 2011.
http://www.nytimes.com/2011/01/09/world/09wiki.html.

[26] Sherwood, R., Bhattacharjee, B., and Srinivasan, A.
P5: A protocol for scalable anonymous communication. In
Proceedings of the 2002 IEEE Symposium on Security and
Privacy (May 2002).

[27] Shostack, A., and Goldberg, I. Freedom systems 1.0
security issues and analysis. White paper, Zero Knowledge
Systems, Inc., October 2001.

[28] Syverson, P., Tsudik, G., Reed, M., and Landwehr, C.
Towards an Analysis of Onion Routing Security. In
Proceedings of Designing Privacy Enhancing Technologies:
Workshop on Design Issues in Anonymity and
Unobservability (July 2000), H. Federrath, Ed.,
Springer-Verlag, LNCS 2009, pp. 96–114.

[29] Wang, X., Chen, S., and Jajodia, S. Tracking anonymous
peer-to-peer voip calls on the internet. In Proceedings of the
ACM Conference on Computer and Communications
Security (November 2005), pp. 81–91.

[30] Wolinsky, D. I., Corrigan-Gibbs, H., and Ford, B.
Dissent in numbers: Making strong anonymity scale. In
Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (October 2012).

[31] Yang, Z., Zhong, S., and Wright, R. N.
Anonymity-preserving data collection. In Proceedings of the
11th ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining (2005), pp. 334–343.

[32] Zhu, Y., and Bettati, R. Unmixing mix traffic. In
Proceedings of Privacy Enhancing Technologies workshop
(PET 2005) (May 2005), pp. 110–127.

[33] Zhu, Y., Fu, X., Graham, B., Bettati, R., and Zhao,
W. On flow correlation attacks and countermeasures in mix
networks. In Proceedings of Privacy Enhancing
Technologies workshop (PET 2004) (May 2004), vol. 3424
of LNCS, pp. 207–225.

